Resonant photoemission of single-crystal \(\text{RBa}_{2}O_{5+y} \) \((R=\text{Gd, Dy})\)

W. R. Flavell,* A. G. Thomas, D. Tsoutsou, A. K. Mallick, and M. North
Department of Physics, UMIST, P.O. Box 88, Manchester M60 1QD United Kingdom

E. A. Seddon, C. Cacho, A. E. R. Malins, and S. Patel
CLRC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD United Kingdom

R. L. Stockbauer, R. L. Kurtz, and P. T. Sprunger
Department of Physics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

S. N. Barilo, S. V. Shiryaev, and G. L. Bychkov
Institute of Solid State and Semiconductor Physics, Belarus Academy of Sciences, 17 P. Brovka St., Minsk 220072, Belarus
(Received 6 July 2004; published 22 December 2004)

Resonant photoemission of single crystals of the double perovskites \(\text{GdBa_{2}O_{5+y}} \) and \(\text{DyBa_{2}O_{5+y}} \) has been carried out at the UK Synchrotron Radiation Source at Daresbury. The resonance onset energy at the Co \(3p \rightarrow 3d \) threshold is used to explore the Co spin state in the double perovskites as a function of temperature.

In contrast with the simple perovskites \(\text{LaCoO}_{3} \) and \(\text{HoCoO}_{3} \), an undelayed resonance is observed for \(\text{GdBa_{2}O_{5+y}} \) and \(\text{DyBa_{2}O_{5+y}} \) at temperatures as low as 50 K, consistent with the idea that the Co spin state in the pyramidal sites of the double perovskites does not fluctuate with temperature. The temperature variation of the data suggest that the phase transition observed in \(\text{GdBa_{2}O_{5+y}} \) at around 350 K is not associated with a sudden low spin-high spin switch in the octahedral sites. The giant rare earth \((R)\) \(4d \rightarrow 4f \) resonances are also probed, and are used to identify the \(4f \) contributions to the valence band. This shows that the density of states close to the Fermi energy for all materials is of Co \(3d/IO_{2} \) character, with no \(R 4f \) contribution. Comparison is made with LSDA+U calculations. Our experiments indicate that the spin equilibrium in the double perovskites is significantly shifted in favor of higher spin multiplicities compared with materials such as \(\text{LaCoO}_{3} \).

DOI: 10.1103/PhysRevB.70.224427

INTRODUCTION

The recently discovered “double perovskites,” of general formula \(\text{R} \text{Ba}_{2}O_{5+y} \) \((R=\text{rare earth element, } \delta =0 \leq \delta \leq 1)\) show a range of poorly understood spin-state transitions. The nominal Co valency varies between 3.5 and 2.5 as \(\delta \) varies between 0 and 1.\(^{1} \) When \(\delta =0.5 \), the Co valence is 3.0, and giant magnetoresistance may be observed.\(^{1} \) The structure is derived from the “112” structure of \(\text{YBaFeCuO}_{5} \) and is formed from the mixture of \(\text{CoO}_{5} \) and \(\text{CoO}_{6} \) perpendicular to the \(c \) direction. Whereas the Co \((\text{III})\) ion occupies only octahedral sites (\(\text{CoO}_{6} \)) in simple perovskites such as \(\text{LaCoO}_{3} \), in the double perovskites, Co \((\text{III})\) is present in two environments, octahedral and pyramidal \(\text{CoO}_{3} \).\(^{2} \) At the \(\delta =0.5 \) composition, these are present in equal numbers, forming alternating planes of \(\text{CoO}_{5} \) and \(\text{CoO}_{6} \) perpendicular to the \(c \) axis.\(^{1} \)

The (Co III) ion in an octahedral environment as found in simple cobaltite perovskites such as \(\text{LaCoO}_{3} \) presents a challenging system, as the competition between the crystal field splitting and the intra-atomic exchange interaction is influenced by strong Co \(3d-O_{2}2p \) hybridization, affecting the on-site Coulomb repulsions.\(^{4} \) The result is that three spin states for Co \((\text{III})\) are typically possible at temperatures in the range 100–400 K, the low spin state \(\text{LS} \) \((t_{2g}e_{g}) \), the high spin state \(\text{HS} \) \((t_{2g}^{2}e_{g}^{2}) \), and a state intermediate between these two \(\text{IS} \) \((t_{2g}^{5}e_{g}^{5}) \).\(^{4} \) The latter is thought to be stabilized by very strong Co \(3d-O_{2}2p \) hybridization, in effect existing as a mixture of \(t_{2g}^{5}e_{g}^{5} \) and \(t_{2g}^{5}e_{g}^{1}L \) \(L \) states (where \(L \) indicates a ligand hole).\(^{4} \) For these systems, the Co exists in the LS state at low temperatures (for \(\text{LaCoO}_{3} \), below around 80 K), with transitions between LS and IS and between IS and HS as the temperature is raised. At high temperatures (in excess of 500 K for \(\text{LaCoO}_{3} \)), the spin state is predominantly HS. There is increasing experimental data to suggest that the transitions between these three states occur gradually as a function of temperature, with an equilibrium population of all three at intermediate temperatures that shifts only slowly from majority LS to minority HS as the temperature is increased.\(^{5,6} \)

One may anticipate similar spin state transitions at the octahedral Co \((\text{III})\) sites in the double perovskites, and indeed, this has been suggested to be the origin of the variations in magnetic susceptibility observed as a function of temperature in \(\text{GdBa_{2}O_{5+y}} \).\(^{1} \) The material undergoes a transition from antiferromagnetic (AFM) to ferromagnetic (FM) at around 220 K, and from ferromagnetic to paramagnetic at around 285 K.\(^{7} \) In addition, the material shows changes in resistivity consistent with a nonmetal-to-metal transition at around 350 K.\(^{7} \) However, there is currently considerable debate about the spin changes and orbital orderings giving rise to these transitions. Kim et al. conclude from magnetic susceptibility measurements that Co \((\text{III})\) in the octahedral sites of the structure is in the LS state only below 75 K, and is IS above this temperature.\(^{7} \) The AFM to FM transition is then understood in terms of orbital ordering of the IS state \(e_{g} \) electron,\(^{7} \) and the nonmetal-to-metal transition at around 350 K is understood in terms of the transition from IS to HS.\(^{7} \) A similar origin for the nonmetal-to-metal transition in \(\text{TbBa_{2}O_{5+y}} \) is proposed by Moritomo et al.\(^{8} \) In contrast, the Co ions at \(\text{CoO}_{5} \) pyramidal sites are believed to remain in the same spin state.
state (IS) in the temperature regime where magnetic transitions are observed (typically 50–350 K). The reduced symmetry of these pyramidal sites compared with the CoO$_6$ octahedra lifts the degeneracy of the t_{2g} and e_g sites and lowers the crystal field (CF) stabilization, reducing the stability of the LS state compared with IS and HS. As a result, the LS state is not expected to be occupied even at very low temperature. While there appears to be some consensus of opinion that the spin state in the CoO$_5$ pyramids does not change, there are a number of different suggestions for the spin state variation with temperature in the octahedral sites. In contrast with Kim et al. and Moritomo et al., Frontera et al. attribute the nonmetal-to-metal transition at around 350 K to a sudden LS to HS transition in the octahedral sites. In marked disagreement, the LSDA+U calculations of Wu suggest that the LS state in the double perovskites is less stable than in corresponding simple perovskites such as LaCoO$_3$. This author attributes both the AFM-FM and the nonmetal-to-metal transition to gradual $pd\sigma$ hole delocalization in an “almost HS” state, implying that the HS state is predominant at much lower temperatures than in LaCoO$_3$.

The determination of the Co (III) spin state in these materials, and the relationship of this to electronic structure is thus currently a topic of urgent investigation. Here we present valence band photoemission of single crystal GdBaCo$_2$O$_{5+\delta}$ and DyBaCo$_2$O$_{5+\delta}$, concentrating on the use of resonant photoemission at the Co 3$p\rightarrow3d$ and R 4$d\rightarrow4f$ thresholds to identify the atomic parentage of the valence band states. Co 3$p\rightarrow3d$ resonance photoemission has previously been shown to be a powerful diagnostic of the LS (low spin) state of d^{6} Co (III) in cobaltites. The resonance onset position of features associated with the LS state lies typically around 2.5 eV higher than those associated with Co (III) in HS (high spin) or IS (intermediate spin) states. This is thought to be because the t_{2g} states are full in the LS state so the Co 3$p\rightarrow3d$ transitions are delayed until the e_g states, which lie \sim1–2 eV higher, can be occupied. Here we use this approach to confirm the presence of some IS/HS component of the Co (III) spin state in the double perovskites at temperatures as low as 50 K.

EXPERIMENT

Single crystals of GdBaCo$_2$O$_{5+\delta}$ and DyBaCo$_2$O$_{5+\delta}$ of typical dimension $2 \times 3 \times 2$ mm3 were grown from an overstoichiometric flux melt. The oxygen content of the Gd crystal was determined from calibration curves relating the crystal lattice parameters (determined by x-ray diffraction) to
Kim crystal gave results strikingly similar to those presented by d. gave a value of netic hysteresis measurements for the GdBaCo$_2$O$_{5+\delta}$ around 9.5 and 5.5 eV binding energy monitoring the evolution of contamination peaks at around 6–24 h in UHV. Sample cleanliness was checked by surfaces were homogeneous, and typically stable over a period of 0.2 eV. All spectra are referenced to a Fermi edge recorded from the cleaned Cu sample plate and normalized to the I_{o} (flux) monitor of the beamline. I_{o} was recorded using a W mesh placed in the beamline just prior to the point where light enters the experimental chamber. The experimental (analyzer+beamline) resolution for valence band EDCs was 185 meV.

RESULTS AND DISCUSSION

Figure 1 shows room temperature valence band photoemission spectra of GdBaCo$_2$O$_{5+\delta}$ (001) taken at photon energies in the region of the Co 3p→3d resonance (at around 62 eV, and discussed later). The general features of the spectrum are a broad valence band (around 9 eV wide), with an additional small feature at around 15 eV BE. The valence band shows a small tail up to the Fermi energy, and the leading (low binding energy) edge shows features at around
2, 4, and 6 eV BE. Similar features are seen in the valence band spectrum of DyBaCo$_2$O$_{5+y}$ as shown in Fig. 2 (taken at energies around the Ba 4d→4f resonance, and discussed later). In the valence band region, we may reasonably expect contributions from Co 3d, O 2p, and R 4f states; these contributions are explored by the resonant photoemission experiments described later. A distinct sharp feature at around 1–2 eV BE appears strongly in the spectra of simple perovskites such as LaCoO$_3$ and HoCoO$_3$ and has been associated with the presence of Co (III) in the LS state. In the double perovskites, we note that this feature appears less pronounced in the case of the DyBaCo$_2$O$_{5+y}$.

In assigning the valence band features, we begin by identifying any contributions from Ba outside the valence band region. Figure 2 shows valence band spectra taken at energies in the vicinity of the Ba 4d→4f resonance at ~104 eV. This clearly identifies the Ba 5p features in the region 14–16 eV BE (features F and G). The “giant” 4d→4f resonances for the Gd and Dy perovskites are explored in Figs. 3 and 4, respectively. These resonances, at around 150 eV photon energy and 162 eV photon energy, respectively, are so intense that they completely mask the underlying valence band features. The Gd 4f resonances are explored by the resonant photoemission experiments described later.

The cross section enhancement is very effective at the Fermi energy (1–2 eV binding energy, feature B). The Gd 4d→4f resonance has been a subject of extensive discussion in the literature since 1981. For a general lanthanide configuration, the direct photoemission process may be described by electric dipole excitation of an f electron into continuum states $e'$$\ell$:

$$4d^{10}4f^{n} \rightarrow 4d^{10}4f^{n-1} + e'\ell.$$

Resonant photoemission is caused by a coherent superposition of this and the indirect channel opened up at resonance

$$4d^{10}4f^{n} \rightarrow 4d^{10}4f^{n-1} \rightarrow 4d^{10}4f^{n-1} + e'\ell,$$

i.e., creation of an intermediate 4d hole state which decays through a radiationless super Coster-Kronig (sCK) Auger recombination to give the same final state as the direct process. The cross section enhancement is very effective at the 4d→4f giant resonance, as both shells have the same principal quantum number and have similar radial distributions.

The Gd metal, which is a particularly simple case as the ground state is a half-filled shell (4f^7), the 4d→4f resonance consists of a broad and dominant absorption peak (the giant resonance), preceded by narrow and weak lines (the pre-edge region). The narrow lines are believed to be due to forbidden “spin flip” transitions which occur during the reso-
This resonance is less well-studied than in the Gd case, but a
resonance signal is anticipated, as seen in the CIS spectra of
Gd metal and Gd (III) (the formal oxidation state anticipated
here) are $4f^7$ systems, so we expect strong similarities in
resonant behavior; this is indeed the case, as can be seen by
a comparison of the 8 eV BE resonance (feature E) with the
photoelectron yield spectrum of Gd metal recorded by
Gerken et al.18 [inset, Fig. 3(b)].

In summary, the Gd resonance spectra confirm that the Gd
ground state is $4f^7$ in GdBaCo$_2$O$_{5+\delta}$, and show the $4f$ con-
tribution to the valence band density of states function to be
centered at around 8 eV BE. Most importantly, there is no $4f$ con-
tribution within several electron volts of the Fermi energy,
and we thus anticipate that these states have entirely Co
3d and O 2p character. Generally similar features are ob-
erved for DyBaCo$_2$O$_{5+\delta}$ at the Dy 4d–4f resonance,
shown in Figs. 4(a) and 4(b). Here the ground state [as-
suming a Dy (III) oxidation state in the double perovskite] is $4f^6$.
This resonance is less well-studied than in the Gd case,22 but
as the ground state is no longer half-filled, a more complex
resonance signal is anticipated, as seen in the CIS spectra of
Fig. 4(b). The $4f$ contribution to the valence band is seen to
be centered at around 9 eV BE [feature E, Fig. 4(b)], with $5p$ con-
ntributions in the range 20–27 eV BE. Again, no resonance is ob-
erved for features close to the Fermi energy [e.g., the
feature at 1 eV BE, feature B, Fig. 4(b)], showing that the
states near E_f have no $4f$ character. The Co 3d character of
these states is probed by experiments at the Co 3p–3d reso-
nance described later.

Resonant effects at transition metal 3p–3d thresholds
are seen for a wide range of materials, albeit with much
smaller cross sections than the giant R 4d–4f resonances.
The processes occurring for the Co (III) initial state config-
uration are given later. The direct photoemission process may
be written

\[3p^63d^6 + h\nu \rightarrow 3p^53d^5 + e + \ell . \]

At photon energies larger than the 3p–3d absorption
threshold, the direct process is supplemented by initial 3p
–3d excitation, followed by super Coster-Kronig Auger de-

\[3p^63d^6 + h\nu \rightarrow 3p^53d^7 \rightarrow 3p^63d^6 + e + \ell . \]

We may therefore expect the observed binding energy of the
resonance features to be affected by the initial occupancy of
the d orbitals, and the resonance position may therefore re-

The low cross section of the Co 3p–3d resonance has
the result that the spectral changes in the region of the reso-
nance are scarcely discernible in valence band EDCs (Fig.
1), and CIS mode is required to reveal them. Figure 5 shows
CIS spectra recorded over the Co 3p–3d resonance for
GdBaCo$_2$O$_{5+\delta}$ as a function of temperature. The spectra have
been normalized to the I_0 reading so that an absolute com-
parison of intensities may be made. The binding energy po-
tions chosen for the CIS spectra are labelled in Fig. 1. For
comparison, analogous data for a simple perovskite, LaCoO$_3$
are also shown in Fig. 6.23 It can be seen from Fig. 5 that in
the case of GdBaCo$_2$O$_{5+\delta}$ the Co 3p–3d resonance is a
weak, broad feature centered at around 62 eV photon energy,
with a resonance onset typically around 60.5 eV, rising to a
maximum at around 64 eV. Some evidence of a Co reso-
nance is seen for all the valence band energies chosen, indic-
ating that the Co 3d states are widely spread throughout the
valence band. Of particular interest is the resonance behavior
of the valence band feature at around 2 eV BE (feature B),
which in simple perovskites has been associated predomi-
nantly with the presence of Co (III) in the LS state.12,15,16

This is shown in more detail for both GdBaCo$_2$O$_{5+\delta}$ and
DyBaCo$_2$O$_{5+\delta}$ in Fig. 7. This feature shows a resonance on-
FIG. 6. CIS spectra at the Co $3p \rightarrow 3d$ threshold recorded from LaCoO$_3$ (111) as a function of temperature. Points A–E refer to the valence band positions marked on the inset EDC spectrum. The dashed lines originating at the resonance minimum of feature B are drawn to emphasise the ~ 2 eV shift in resonance onset position between features B and C–E at low temperature. Spectra are normalized to the incident photon flux. The small feature observed at 59 eV at point A is not an intrinsic part of the resonance (Ref. 12). Adapted from Ref. 12.

FIG. 7. Temperature variation of the CIS spectra at the Co $3p \rightarrow 3d$ threshold for the 2 eV BE feature [point B in Figs. 1, 2, 3(a), and 4(a)] of (a) GdBaCo$_2$O$_{5+\delta}$ (001) and (b) DyBaCo$_2$O$_{5+\delta}$ (001). The data are normalized to the incident photon flux.

set at around 60.5 eV which is invariant with temperature down to the lowest temperature probed (50 K for GdBaCo$_2$O$_{5+\delta}$ and 100 K for DyBaCo$_2$O$_{5+\delta}$), and which is similar to the onset energy of the other valence band resonances probed (Fig. 5). There appear to be no large changes in intensity of this resonance relative to the other valence band resonances as a function of temperature (Fig. 5).

This unexceptional behavior is in marked contrast with the behavior of simple perovskites, such as LaCoO$_3$, HoCoO$_3$, and HoCoO$_3$. The first obvious experimental difference is that in the case of the double perovskites, it is possible to record data without sample charging to temperatures as low as 59 eV at point A is not an intrinsic part of the resonance (Ref. 12). Adapted from Ref. 12.

As the temperature is raised, and the low spin state is depopulated in favor of IS, it can be seen from Fig. 6 that the delayed resonance effect disappears (all resonance onsets are aligned at 485 K). In sharp contrast, for GdBaCo$_2$O$_{5+\delta}$ and DyBaCo$_2$O$_{5+\delta}$ (Fig. 7), the resonance onset of feature B is undelayed at all temperatures down to 50 K for GdBaCo$_2$O$_{5+\delta}$ and 100 K for DyBaCo$_2$O$_{5+\delta}$, occurring at the same energy as the onsets of the other valence band resonances (~ 60.5 eV). This demonstrates that even at the lowest temperatures probed, a significant proportion of the Co (III) in the double perovskites is in the LS state. This is consistent with the idea that the Co (III) in pyramidal sites remains in an unchanged (probably IS) state at all temperatures. Because of the presence of the undelayed resonance in all the spectra, it is difficult to find evidence for LS Co (III) in the CIS data. The only pos-
sible indication of the presence of the LS state is that for both double perovskites, the lowest temperature spectrum in Fig. 7 appears to show a “double rise,” with an initial onset at 60.5 eV and a second onset at around 63 eV; this is most evident in the case of DyBaCo$_2$O$_{5+\delta}$ [Fig. 7(b)]. This double feature is apparently reduced in intensity as the temperature of the DyBaCo$_2$O$_{5+\delta}$ sample is raised, and is lost by 350 K. This may suggest some occupation of the LS state at low temperature that is progressively lowered as the temperature is raised. However, the changes in the GdBaCo$_2$O$_{5+\delta}$ spectra [Fig. 7(a)] are far less clear, and these data do not allow us to infer the presence of LS Co (III).

Definitive evidence for a significant change in the proportion of LS Co (III) is similarly difficult to extract from valence band EDCs taken as a function of temperature. As previously noted, the 2 eV BE feature (feature B) appears to be much less pronounced in the case of double perovskites than in the spectra of simple perovskites such as LaCoO$_3$ [12,15,16] and HoCoO$_3$. In the latter cases, a distinct feature at 1–2 eV BE appears strongly in the spectra at low temperatures, and decreases in intensity as the sample temperature is raised [12,15,17] (Fig. 6, inset). This feature has been associated with Co (III) in the LS state (more specifically to a transition of 2T_2 symmetry corresponding to the t_{2g} (A_1) $+ h\nu \rightarrow t_{2g}$ (2T_2) $+ e$ (photoemission channel)). As this feature has been made largely through configuration interaction calculations using octahedral CoO$_6^{2-}$ clusters, we expect to observe a similar feature in the valence band EDCs of any system containing LS Co (III) in an octahedral environment. Although a feature at 2 eV BE is present in the spectra of the double perovskites, it is not resolved from the main valence band, and appears to show no variation in intensity over the whole of the temperature range (50–400 K) studied here. (In fact, the only marked changes we observed in the spectra as a function of temperature could be associated with surface degradation, particularly at low temperatures.) An example is shown in Fig. 8, where normalized spectra taken in the range of the 2 eV feature (feature B) of GdBaCo$_2$O$_{5+\delta}$ over the temperature range 300–400 K are shown. This temperature range is of particular interest, as changes in resistivity, lattice parameters, and susceptibility, which have been associated with a metal-to-nonmetal transition, have been observed at around 350 K for GdBaCo$_2$O$_{5+\delta}$. If the metal-to-nonmetal transition is associated with a sharp HS-LS transition in the octahedral sites, as has been suggested, then we would expect to observe very marked changes in the intensity of the 2 eV feature associated with LS in this range, and a loss of the density of states at the Fermi energy. In fact, as can be seen in Fig. 8, no significant changes in any of the spectral features are observed in this temperature range. We cannot rule out the possibility that the absence of the transition in our spectra may be simply due to the fact that the oxygen content of our sample is raised, and is lost by 350 K. The data are normalized to the incident photon flux.

Absence of any variation in intensity in the “Co LS peak” at 2 eV BE (feature B) militates against a rapid LS-HS spin flip in the octahedral sites in this temperature range.

This general conclusion appears to be supported by available band structure calculations for the double perovskites, although there are also significant discrepancies between our experiment and these calculations. Figure 9 shows a comparison between the valence band spectrum for GdBaCo$_2$O$_{5+\delta}$ at 300 K and LSDA+U calculations by Wu [11] for a hypothetical FM state at 300 K. Some caution needs to be exercised in comparing our one electron removal spectra with a ground state calculation. In addition, the appearance of the experimental spectra is weighted by the difference in photoionization cross-sections of the Co 3d and O 2p states. For the purposes of the comparison in Fig. 8 we have chosen a photon energy of 58 eV, where the O 2p and Co 3d cross sections are relatively similar (σ: O 2p/Co 3d = 6 Mb atom$^{-1}$/8.5 Mb atom$^{-1}$). The calculations show a valence band of around 8 eV wide, composed of Co 3d and O 2p states, broadly in agreement with experiment. Gd 4f states are not included in the calculation as valence states; in our experiment, we showed these to be located around 8 eV BE, with no detectable contribution at lower binding energy.

From the calculated data one can infer the spin state from the filling of the majority and minority spin states (indicated in full and dashed lines, respectively). In the case of an HS state, the majority spin channel is completely filled, whereas for a LS state, the e_g states for both majority and minority channels should be completely empty. As can be seen from
FIG. 9. (a) Comparison of the experimental EDC of GdBaCo$_2$O$_{5+4}$(001) recorded at 58 eV photon energy and 300 K with the bulk band structure calculations of Wu (Ref. 11) for a hypothetical ferromagnetic phase at 300 K. The calculations have been aligned with experiment at the Fermi energy. In the calculation solid and dotted lines represent majority and minority spin states, respectively. (b) d orbital contributions to the calculated density of states function for pyramidal and octahedral Co(III), adapted from Ref. 11. Solid and dotted lines represent majority and minority spin states, respectively.
Fig. 9(b), the spin state predicted by the calculation in the octahedral sites is very close to HS for the FM phase (similarly the calculation for the antiferromagnetic phase (AFM) expected at lower temperature (not shown) also somewhat surprisingly shows an almost HS state). The Co in the pyramidal sites is taken to be in a localized HS state from the calculation.11 Both the AFM/FM and nonmetal-to-metal transitions in this calculation occur through gradual delocalization of the pd\textsubscript{σ} holes in the almost HS state of GdBaCo\textsubscript{2}O\textsubscript{5.5},11 rather than through a sudden Co LS-HS spin flip. Overall the calculation suggests that the HS state is much more stable in double perovskites such as GdBaCo\textsubscript{2}O\textsubscript{5.5} than in simple perovskites such as LaCoO\textsubscript{3}. This is attributed to two effects. The first is a smaller calculated splitting in the double perovskite (1.0 eV for GdBaCo\textsubscript{2}O\textsubscript{5.5} vs 1.2 eV in LaCoO\textsubscript{3}),11 an effect that makes the LS state less stable in the double perovskite. This is coupled with weaker pd\textsubscript{σ} hybridization in the double perovskite, due to strong corrugation of the “CoO\textsubscript{4}” basal plane of the octahedra. Strong pd\textsubscript{σ} hybridization stabilizes the IS state relative to LS and IS in SrCoO\textsubscript{3}28 and La\textsubscript{1-x}Sr\textsubscript{x}CoO\textsubscript{3}.4,16 Thus overall, both LS and IS states are expected to be less stable in double perovskites than in simple perovskites.11 The predicted lower stability of the LS state correlates well with our experimental observations that the LS state is much less obvious in the spectra (either the CIS or the EDC data) at a given temperature than for simple perovskites such as LaCoO\textsubscript{3}12,15,16 or HoCoO\textsubscript{3}.17 However, we stress that our experiments are a particularly sensitive diagnostic of the LS state only; we are unable to distinguish effectively between the HS-LS-HS transition. Thus, while our experiments suggest that a rapid HS-LS spin flip at the metal-to-nonmetal transition is unlikely, we are unable to distinguish between the HS-HS “delocalization” model of Wu et al.,11 and the IS-HS mechanism proposed by Kim et al.7 and Moritomo et al.8

The absence of any dramatic changes in the spectra as a function of temperature also suggests that the electronic structure changes giving rise to changes in magnetic behavior are gradual and subtle. This is in contrast with the results of other measurements (particularly diffraction) which suggest rapid changes in the vicinity of the phase transition.1 A similar apparent contradiction is observed in the simple perovskites, notably LaCoO\textsubscript{3}, where photoemission shows a gradual evolution from a mostly LS state at low temperature, to a mostly HS state at high temperature, via an IS state.12,15 Indeed, the photoemission data may be fitted to the three-state model of Asai et al.,12 where a shifting equilibrium between different proportions of LS, IS, and HS states exists at all temperatures.7 In contrast, bulk susceptibility and lattice parameter measurements for LaCoO\textsubscript{3} show sudden changes with temperature6,29 which were again initially interpreted in terms of a simple and sudden LS-HS transition in the CoO\textsubscript{6} octahedra,30 but were later shown to be consistent with a three-state model.6 Similarly, our photoemission data for the double perovskites indicate that the mechanism for the phase transition is more subtle than a sudden LS-HS switch.

The calculation for the FM phase shows a low density of states (DOS) at the Fermi energy (E\textsubscript{F}), arising from weakly delocalized minority spin Co d\textsubscript{yz} orbitals in both octahedral and pyramidal sites. A small DOS at E\textsubscript{F} is observed experimentally (Figs. 8 and 9). However, the observation of this DOS in our experiment at room temperature (below the anticipated nonmetal-to-metal transition) is unexpected, as discussed earlier. The calculation also shows the main Co 3d contributions to the valence band to lie around 1 and 6–8 eV below the Fermi energy, with the filled states between these energies having mostly O 2p character (from O in the basal plane, and at the apices both in the Gd layers and the Ba layers of the structure). In contrast, our resonant photoemission taken at the Co 3p-3d threshold (Fig. 5) shows no strong variation in the intensity of the Co 3p-3d resonance and thus in the Co 3d character across the valence band. In particular, we do not observe an enhancement in the resonance intensity at 6–8 eV binding energy. This means that the Co 3d-O 2p hybridization of the valence band states observed experimentally is stronger than predicted by the calculation. This is a factor that will make the IS state more stable relative to LS and HS than suggested from the calculation.

CONCLUSIONS

Resonant photoemission measurements from single crystal (001) surfaces of the double perovskites GdBaCo\textsubscript{2}O\textsubscript{5.5} and DyBaCo\textsubscript{2}O\textsubscript{5.6} indicate that the valence band is made up of strongly hybridized O 2p and Co 3d states. The Gd and Dy 4f contributions to the valence band are centered at around 8 eV BE for Gd and around 9 eV BE for Dy. In both cases there are no 4f states close to the Fermi energy, and the Gd 4d-4f resonance confirms a Gd (III) oxidation state. The valence band electronic structure contrasts markedly with that observed for simple perovskites such as LaCoO\textsubscript{3}12,15,16 and HoCoO\textsubscript{3}17 in that no marked intensity variations are observed with temperature in the range 50–400 K. The valence band feature at around 2 eV BE [associated with LS Co (III) in the case of simple perovskites] is less pronounced than in the cases of LaCoO\textsubscript{3} and HoCoO\textsubscript{3}, and, unlike the simple perovskites, shows no strong intensity variation with temperature. This strongly suggests that the phase transition observed in this material at around 350 K is not associated with a sudden LS-HS spin switch in the octahedral sites.1 The associated metal-to-nonmetal transition was not observed as a change in the DOS at E\textsubscript{F}, which showed the characteristics of a poor metal in the range 300–400 K. The reasons for this are unclear, but may be associated with the presence of d3 Co (II) cations in the sample. Co 3p-3d resonance photoemission shows an undelayed onset at temperatures as low as 50 K, indicating that some Co remains in an IS or HS state in the sample at very low temperatures. This accords with the idea that the Co spin state in the pyramidal sites of the material is unchanged with temperature. At the lowest temperatures studied, some slight possible evidence of a second “delayed” resonance, characteristic of Co (III) in an LS state,12 is observed, which has disappeared by 350 K.

The subtle and gradual changes in the CIS data with temperature, and the absence of marked temperature variations in the EDCs suggest that any spin changes in these materials are similarly gradual. The lack of a strong photoemission
feature due to LS Co (III) in the valence band EDCs suggests that the LS state is less stable in these materials than in a simple Co (III) perovskite at the same temperature. This finding is in agreement with LSDA+U band structure calculations for \(R BaCo_2O_5 \). The small energy difference suggests that the mechanism is more subtle than a sudden LS-HS of the metal-to-nonmetal transition, although our data indicate that the spin equilibrium in the double perovskites is close to HS. In our experiments we are unable to distinguish between IS and HS states, so we are unable to comment on the hypothesis of Wu that the spin state in the AFM and FM phases is close to HS. Similarly, in the case of the metal-to-nonmetal transition, although our data indicate that the mechanism is more subtle than a sudden LS-HS switch, we are unable to distinguish between the HS-HS delocalization model of Wu et al. and the IS-HS mechanism proposed by Kim et al. and Moritomo et al. Nevertheless, our experiments indicate that the spin equilibrium in the double perovskites is significantly shifted in favor of higher spin multiplicities compared with materials such as \(LaCoO_3 \) and \(HoCoO_2 \).

ACKNOWLEDGMENTS

This work was supported under INTAS Grant No. 01-0278. The authors thank Dr. Andrei Podlesnyak of PSI Villigen, Dr. Robin Pritchard of the Chemistry Department at UMIST, and Dr. Peter Mitchell of the Schuster Laboratory, University of Manchester, for assistance in characterizing the single crystals used in this work. R.J.S., R.L.K., and P.T.S. were supported by Louisiana State University. D.T. is supported by EPSRC (UK) and CCLRC (UK).

Author to whom correspondence should be addressed. Electronic address: wendy.flavell@manchester.ac.uk

13 A. Podlesnyak (private communication).
23 Adapted from Ref. 12.
25 The total drop in energy of the midpoint of the resonance (defined as the midpoint between the tic marks shown in Fig. 6 over the range 130–500 K measured in Ref. 12) is approximately 2 eV, which approximately corresponds to the crystal field stabilization energy. It should be noted that there will also be a contribution from the energy differences in electron correlation and charge transfer effects, depending on the electronic configuration changes occurring between the different spin states (i.e., to account for the fact that in the region of LS the CIS experiment excites an electron into the empty \(e_g \) state, whereas in the IS case an electron is excited into a \(t_{2g} \) state already containing five electrons and the \(e_g \) also contains one or two electrons), thus the measured energy difference we measure here will not be purely the crystal field splitting (10 Dq).